Lecture 14

- · Review
- · Lorentz transformations
 of EM fields
- of EM fields · Kramers - Kronig relations, dispersion

. We return to the study of EM fields in media, but at a more advanced level → absorbtion - non-locality in Hune -> convolution and gregnency - analyte properties -s example: resonant absorbtion model. I very general! · Let us remember the Jollowing effect: polarisation of dielectric media by external electric field

$$P(\vec{x}) = \vec{z} \, d_n \, J(\vec{x}_n - \vec{z})$$
 smearing sundson $P(\vec{x}_n - \vec{z}) = P(\vec{x}_n) - \vec{v} \cdot \vec{v} \cdot \vec{v}$ medium.

 $P(\vec{x}) = P(\vec{x}_n) - \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$

From this we bearined averaged Maxwell equations:

 $\vec{v} \cdot \vec{E} = \frac{P(\vec{x}_n) - \vec{v} \cdot \vec{v}}{E_n}$

We also defined the Displacement vector $\vec{v} \cdot \vec{v} \cdot \vec{v}$

And we did a similar treatment for the magnetic phenomenon $H = \frac{1}{16}B - M$ megnetication

The Maswell equations eventually read: $\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$ 7.5 = 9 7×H-30=3 J.B=0 To make use of them we need The relation between E and 5 and IT and B' which we chose DBH = SEB,+) H(Q,t) = 1 B'(D,t) This result is correct for static golds, however, we also used it for our discussion of EM waves. In the case of time-dependent fields there are two new effects:

- absorbtion (& and go have imaginary parts) - dispersion (relation between E and B (F) is non-local in time) The two effects turn out to be closely related. · Let us girst understand why imaginary parts of 2 and plead to absorbtion of energy of EM fields by the medium. Let us consider a monohromatic field: Ē=Ēeiw+

Let us consider a monohromatic plane have in a material: E= 1 iwt + it. Z suppose t= (k, 0,0) then Kx = JEgn W -If ξ or g have imaginary part then k_{\times} has imaginary part =7 wave expo--hentally decays From non on we will Josep on E, assuming y real and constant. Then a general relation Between Dand E is D(+) = & E(+) + Ef &(T) E(+-T) dT Here we singled out the gorst term

Jor convenience, but most importantly, integral is over positive
$$\tau \Rightarrow$$
 causality. Let us now Fourier transform this expression:

$$D(t) = \frac{1}{\text{Fit}} \int D(\omega) e^{-i\omega t} d\omega$$

$$D(\omega) = \frac{1}{\text{Fit}} \int D(t) e^{-i\omega t} dt$$

$$D(\omega) = 20 \int \frac{1}{\text{Fit}} e^{-i\omega t} E(t) dt + \frac{1}{\text{Fit}} e^{-i\omega t} f(t) E(t-\tau) = \frac{1}{\text{Fit}} \int D(t) e^{-i\omega t} f(t) e^{-$$

$$\frac{\mathcal{E}(\omega)}{\mathcal{E}_{0}} = 1 + \int d\tau \int (\tau) e^{i\omega\tau} (\tau)$$

$$\frac{\mathcal{E}(\omega)}{\mathcal{E}_{0}} = 1 + \int d\tau \int (\tau) e^{i\omega\tau} (\tau)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) + i\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}'(\omega) + i\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}'(\omega) \text{ is real}$$

$$\mathcal{E}(\omega) = \mathcal{E}'(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}''(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}(\omega) = -\mathcal{E}''(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) = \mathcal{E}(\omega) \text{ and } \mathcal{E}(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega) = \mathcal{E}(\omega) = \mathcal{E}(\omega)$$

$$\mathcal{E}(\omega) = \mathcal{E}(\omega)$$

Consality and analytic properties og ECW)

· We will now consider & as a function og complex variable w, like we did for

the Green's Junetion of 17 operator. · Because in tegral in (+) starts at T=0

S(w) is an analytic function in the upper half phane: integral converges

if Im w >0 e ~ e ...

We assume that the "memory" is sinite so integral also converges for

real w (it is not true got conductors for w=0) For very large real w we can show that $\frac{2lw}{\varepsilon_0} = 1 - \frac{const}{w^2} + ...$

This is because at very high Jrequencies charged particles are Basically gree. mr = e E e => =7 r ~ \frac{1}{\omega^2} P = 2 eF ~ 1 => D - 2 = ~ 1 ~ w

$$\overline{P} = 2e\overline{P} \approx \overline{D} - 2\overline{P} \sim \overline{D}$$

$$2(\omega)$$

$$2(\omega)$$

$$2(\omega)$$

$$2(\omega)$$

$$2(\omega)$$

$$2(\omega)$$

$$3(\omega)$$

We will now use Cauchy is theorem to relate & (w) and & (w) gor (physical)

$$\frac{\mathcal{L}(2)}{\mathcal{L}_{0}} - 1 = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\mathcal{L}(x)}{x - 2}$$

 $\frac{1}{\chi - \omega - i\delta} = P\left(\frac{1}{\chi - \omega}\right) + \pi i \delta(\omega - \omega)$ $\frac{1}{2}\left(\frac{\xi(w)}{\xi_0}-1\right) = \frac{1}{2\pi i} P \int_{-\infty}^{\infty} \frac{\xi(x)/\xi_0-1}{x-w} dw$ Letis take real and imaginary parts: $\frac{2^{1}(\omega)}{2_{0}} - \Delta = \frac{1}{11} P \int \frac{2^{11}(\omega)}{x - \omega} dx$ $\frac{2^{1}(\omega)}{2^{2}} = -\frac{1}{11} p \int \frac{2^{1}(x) - 1}{x - \omega} dx$

These are the Krawers-Kronig relations

now we take

2= W tib

Using symmetry properties we get

$$\frac{\mathcal{E}(\omega)}{\mathcal{E}(\omega)} = 1 + \frac{2}{11} P \int \frac{\times \mathcal{E}'(\omega)}{x^2 - \omega^2} dx$$
 $\frac{\mathcal{E}'(\omega)}{\mathcal{E}(\omega)} = -\frac{2\omega}{11} P \int \frac{\mathcal{E}'(\omega)}{x^2 - \omega^2} dx$

Importance of these relations is in the fact that measuring absorbtion $\mathcal{E}''(\omega)$ allows to reconstruct the entire dispersion of $\mathcal{E}(\omega)$.

Let us consider an example $\frac{\mathcal{E}}{\mathcal{E}(\omega)} = 1 + \frac{2}{\omega_0^2 - \omega^2 - i \times \omega}$

(resonant absorbtion on a line)

$$\frac{2}{2} = 1 + \frac{\text{const}}{w^2} \text{ at } w \to \infty \vee$$

$$\frac{2}{2} = 1 + \frac{\omega^2 - \omega^2}{(\omega^2 - \omega^2)^2 + 2\omega^2}$$

$$\frac{2}{2} = 1 + \frac{\omega^2 - \omega^2}{(\omega^2 - \omega^2)^2 + 2\omega^2}$$

$$\approx 1 + \lambda \frac{1}{\omega_0^2 - \omega^2}$$
, when γ is small, and $\omega \neq \omega_0$

$$\frac{\xi^{4}}{2\omega} = \frac{\chi}{(\omega_{o}^{2} - \omega^{2})^{2} + \chi^{2}\omega^{2}}$$
Let's diede KK: (for $\omega \neq \omega_{o}$ and χ -
$$= \frac{\chi^{2}}{\chi^{2} - \omega^{2}(\omega_{o}^{2} - \chi^{2})^{2} + \chi^{2}\chi^{2}}$$

$$= \frac{\chi^{2}}{\chi^{2} - \omega^{2}(\omega_{o}^{2} - \chi^{2})^{2} + \chi^{2}\chi^{2}}$$

$$\int_{X^{2}-\omega^{2}} (w_{o}^{2} - x^{2})^{2} + y^{2} x^{2}$$

$$= \int_{W_{o}-W^{2}} (w_{o}^{2} - x^{2})^{2} + y^{2} x^{2}$$

$$= \int_{W_{o}-W^{2}} (w_{o}^{2} - x^{2})^{2} + y^{2} x^{2}$$

$$= \int_{W_{o}-W^{2}} (w_{o}^{2} - x^{2})^{2} + y^{2} x^{2}$$

$$\int dz = \frac{2}{2} + \sqrt{2} \approx 2$$

hetis come back to plane waves. $\vec{E} = \vec{E} \cdot \vec{e} i \vec{h} \vec{s} - i \omega t$

Since we derived all eglections in

grequency space, the relations Between

k and w still hold:

iwy(w) Fi = c \(\frac{7}{2} \times E \)

 $i\omega \, \mathcal{E}(\mu) \, \vec{E} = -c \vec{\partial} \times \vec{H} = >$ $\vec{z}^2 = \mathcal{E}(\omega) \, \mu \frac{\omega^2}{c^2}$

Let us first assume that & is real. Then group velocity of

Where $N(w) = \sqrt{2(w)} p$.

If $\leq is$ imaginary \neq develops

Imaginary part. Assume $k \sim (k_{\star}, 0, 0)$

imaginary part. Assume $k \sim (k_{\times}, 0, 0)$ $k_{\times} = \sqrt{2g} \frac{\omega}{c} = \left[N(\omega) + i 2e(\omega)\right] \frac{\omega}{c}$ extinction

extinction coefficient.

KK-like relations can be also

herived for n and &