
Lecture 14

· Review

· Lorentz transformations
o EM fields

· Kramers-kronig relations
, dispersion



· We return to the study of
EM fields in media

,

but at a

more advanced level

-> absorbtion

-> non-locality in time

-> convolution andfrequency
-> analytic properties
-> bramers-knowing relations

-> example : resonant absorption mode
. -

-very general !

· Let us remember the following effect :

polarisation of dielectric media

by external electric field



a smearing(5)=(-) Menation

↓
electric polarization of the

medium.

en > () = p(z)-()
From this we derived averaged Maxwell

equations:

· E =-
We also defined the Displacement
vector

B = E+
And we did a similar treatment for
the magnetic phenomenon

#
magnetisation

Mo



The Maxwell equations eventually read:

=- *xE + o

- E . B = 0

To make use of them we need

the relation between E and i

and I and i which we chose

as

H = SEC
. +

BH)=(*,+)

This result is correct for staticfields,
however

,
we also used it for our

discussion of EM waves
.

In the

case of time - dependentfields there

are two new effects:



-> absorption IE and I have

imaginary parts (

-> dispersion (relation between E

and (t and 5) is non-local

in time
the two effects turn out tose

closely related.

· Let us first understand why imaginary
parts of 2 andM lead to absorbtion

of energy of EM fields by the medium
.

Let us consider a monochromatic field:

Ein+



Let us consider a monohromatic plane
have in a material :

E = ge int + it.

suppose E = (k
+,

0
,
0

than =w
If S or I

have imaginary part then

ky has imaginary part = wave expo-

chentrally decays
From now on we will focus on E,

assuming
M real and constant

.
Then

a general relation between D and E is

-

D() = GE(t) +(()E(+ - 5)d+

Here we singled out the first term



for convenience
,

but most importantly,
integral is over positive i = causality
Let us now Fourier transform this

expression :

D(H =D(w)

D(w)=ei

blu = so einEd
z

+Peiwt(T) El-

= Elm) + GoE(w) (t) ein

= E(r) Elw)



-I
Elw) has real and imaginary parts:

E(u) = E'(w) + is "(w)

Because 1(5) is real

El-w) = <
*

(w) :

s'l-w) = s'(w) and s"(w) = ="(w)

In dielectrics when woo we get
the static situation fields do not

depend on time) & becomes equal
toreal static susceptibility .



Causality and analytic properties of Ecul

· We will now consider E as a function

of complex variable we like we did for
the Green's function of G operator .

· Because integral in () starts at 5=0

EC) is an analyticfunction in the

upper hall phane : integral converges
if Incoso girt-e-Emcwsl . T

⑨

We assume that the "memory" is

limite so integral also converges for
real w (it is not true for

conductors for w=o)

For very large real w we can

show thatul
= 1- t ...



This is because at very high frequencies

charged particles are basically free .

Man

mi = eeiwt

= ~

= EerB-SE-
E(w) ↳

⑳spoh
even mate

-> 1 + but
=-- - 1 -- - -

y↓

Im Ez0



We will now use Cauchy's theorem

to relate E'Cl and Excel for
real w (physical)

#17)a
take

->
vanishes as I&-



now we take z = w real of
inliwiteseala

-
= P() + midwi-2)

X- Wid

↓ (a)=
Let's take real and imaginary parts :

-=x

=-Pdx

These are the Kramers-krowig relations



Using symmetry properties we get
I -

I

-
Importance of these relations is

in the lact that measuring absorption

E'(w) allows to reconstruct the

entire dispersion of E(c)
·

Let us consider an example

-wan-ign
Cresonant absorption on a live



= It at we Do v

+ XFaz
=

=1 + Xan ,
when I is small,

and w wo

+
Let's check KK : for #Wo and -

small (

=
--
Wo-



Jdzw
· Let's come back to plane

waves. E = E . ei-int

Since we derived all equations in

frequency space ,

the relation between

h and w still hold :

inM(u) = Ex

in E(r)E =-

= E(w)M
Let uslirst assume thatE is

real
.

Then
group velocity of



light is given byu=wildw

where nial=

if E is imaginary k develops

imaginary part .
Assume E - (4x

,
0
,0

kx= = (n(w) + ix(w)]z
P

extinction

welficient.

KK-like relations can be also

derived for n andx


